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A three-dimensional simulation of a breaking internal gravity wave in a stratified,
compressible, sheared fluid is used to examine the vorticity dynamics accompanying
the transition from laminar to turbulent flow. Our results show that baroclinic sources
contribute preferentially to eddy vorticity generation during the initial convective
instability of the wave field; the resulting counter-rotating vortices are aligned with the
external shear flow. These vortices enhance the spanwise vorticity of the shear flow via
stretching and distort the spanwise vorticity via advective tilting. The resulting vortex
sheets undergo a dynamical (Kelvin–Helmholtz) instability which rolls the vortex
sheets into tubes. These vortex tubes link with the original streamwise convective
rolls to produce a collection of intertwined vortex loops. A companion paper (Part 2)
describes the subsequent interactions among and the perturbations to these vortices
that drive the evolution toward turbulence and smaller scales of motion.

1. Introduction
Instabilities of internal gravity waves are believed to be a significant source of

turbulence and induced mixing throughout the atmosphere and oceans. At interme-
diate and high frequencies, the instability initially takes the form of the convective
overturning of more-dense fluid over less-dense fluid. This is a result of a growth
of wave amplitude or a lessening of the wave intrinsic frequency. Recent studies
by Andreassen et al. (1994b), Fritts, Isler & Andreassen (1994), Fritts, Garten &
Andreassen (1996a), Fritts et al. (1996b) and Winters & D’Asaro (1994) reveal an
instability composed of counter-rotating streamwise vortices analogous to the longitu-
dinal rolls in sheared convection and consistent with the stability analysis by Winters
& Riley (1992). At lower wave frequencies, linear stability analyses (Fritts & Yuan
1989; Winters & Riley 1992; Dunkerton 1997) suggest that a dynamical instability
will arise due to unstable shear flows within the wave’s motion field. Alternatively,
such a dynamical instability can be caused by a superposed mean shear flow (Yuan &
Fritts 1989). Three-dimensional simulations demonstrating these responses have not
yet been reported.

In the case of convective instability of internal gravity waves, the initial evolution
of the instability structures for a single wave and the energetics of the cascade to
small scales have been studied previously. Andreassen et al. (1994b, see also Fritts
et al. 1994; Isler, Fritts & Andreassen 1994) address the relative influence of two- and
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three-dimensional instability structures and conclude that three-dimensional processes
are essential in describing the physics of wave breaking at higher intrinsic frequencies
as the streamwise rolls which are the dominant instability cannot occur in two
dimensions. Winters & D’Asaro (1994) reach a similar conclusion. Finally, Fritts et al.
(1996a) examine the development of streamwise vorticity and find that the instability
structures depend strongly on the direction of the mean shear. When the shear flow
is aligned with the wave propagation, the instability produces symmetric convective
rolls which contribute large fluxes of momentum and heat; when the shear flow has
a component transverse to the wave propagation, the instability produces thinner,
slanted convective rolls with much weaker heat transports. A further study by Fritts
et al. (1996b) shows that similar streamwise-aligned instability structures occur in
inertia–gravity wave motions at lower intrinsic frequencies.

An important consequence of the numerical studies cited above is an ability to
assess, for the first time, the nature of the transition to turbulent three-dimensional
structure at smaller scales of motion in a stably stratified environment. In particular,
current high-resolution results permit us to examine the relative roles of the baroclinic,
strain, and compressional sources and sinks of vorticity and their evolution within
a breaking gravity wave. Such a study employs a realistic source of the small-scale
turbulent structure since breaking gravity waves are a major source of geophysical
turbulence. Most previous studies, in contrast, focus on the evolution and charac-
teristics of homogeneous, sheared, and/or stratified fluids with turbulence initiated
in one of several ways. In some studies, such flows are forced artificially at large
scales in order to assess the equilibrium or evolutionary flow characteristics at smaller
scales of motion (Herring & Kerr 1993; Erlebacher & Sarkar 1993; Jimenez et al.
1993; Vincent & Meneguzzi 1994; and references therein). In others, spectra having
equilibrium distributions of variance in one or more fields are specified and allowed
to evolve in time (Gerz, Howell & Mahrt 1994).

We present in this paper a detailed analysis of the vorticity field arising due to
a breaking internal gravity wave. To describe the vorticity evolution over a wider
range of scales and to provide enhanced definition of the small-scale structures, we
have increased the model resolution and reduced dissipation relative to our previous
studies. The resulting vorticity evolution is seen to comprise three stages. The first
is the primary convective instability described previously by Fritts et al. (1994). The
resulting convective rolls stretch the vorticity of the background shear flow, and so
create intense localized vortex sheets. This leads to the second stage of the evolution:
the dynamical (generalized Kelvin–Helmholtz, or KH) instability of these spanwise
vortex sheets†. The spanwise vortex sheets roll up into tubes which link, through
tilting and twisting, with the original counter-rotating streamwise convective vortices
to form a collection of intertwined vortex loops. The third stage of the evolution,
which is presented in Part 2 (Fritts, Arendt & Andreassen 1998), involves increasingly
rapid and complex interactions among the vortex loops which drive the vorticity field
toward an isotropic state at small scales.

The stages noted in our study are similar to those described by Vincent & Meneguzzi
(1994) in the evolution of homogeneous turbulence, with vortex sheet formation pre-
ceding roll-up via dynamical instability and vortex interactions driving the evolution

† In our results, the two horizontal orthogonal directions x and y will be referred to as stream-
wise and spanwise respectively. The initial wave propagation is streamwise (with a small vertical
component), as is the background shear flow. The vorticity of the background shear flow is then
spanwise.
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to smaller scales of motion. Our results thus provide partial verification of earlier
predictions of the features of such an evolution by Betchov (1957) and Lundgren
(1982), such as the intensification of vorticity sheets preceding the formation of vortex
tubes. The vortex loops that we find in our simulations are very similar to those found
in other turbulent flows (e.g. Robinson 1991; Sandham & Kleiser 1992; Gerz et al.
1994; Metais et al. 1995); the dynamics which we will describe are thus relevant to
those flows as well.

The paper is organized as follows. Our numerical model and the flow configuration
leading to the wave breaking are described in § 2. Section 3 describes the evolution
of the enstrophy and vortex fields through the primary convective and secondary
dynamical instabilities, while § 4 examines the sources of vorticity for these instabilities
in detail. The evolution of the total enstrophy and enstrophy spectra throughout the
simulation is described in § 5. Our conclusions are presented in § 6.

2. Model description and other preliminaries
2.1. Model formulation

Breaking and instability of an internal gravity wave is simulated using a nonlinear,
compressible spectral collocation code described in detail by Andreassen et al (1994b)
and Fritts et al (1996a, b) for studies of wave breaking and instability structures in
parallel and skew shear flows. It solves the equations describing nonlinear dynamics in
a compressible, stratified, and sheared fluid using a spectral representation of viscous
and diffusive effects. These equations are written as

∂ρ

∂t
+ ∇ · (ρv) = 0,

ρ
dv

dt
= −∇p+ ρg+ F + P ,

dp

dt
+ γp∇ · v = Q,


(2.1)

where v = (u, v, w) is velocity, ρ and p are density and pressure, g is the gravitational
acceleration, and γ is the ratio of specific heats. The density and pressure are related to
temperature through the equation of state, p = ρRT , and the potential temperature,
defined as θ = T (p0/p)

R/cp , is used as an approximate tracer of fluid motions.
For convenience, all variables are non-dimensionalized using the density scale

height H = (d ln ρ/dz)−1, sound speed cs, with c2
s = γgH , a time scale H/cs, and

reference temperature T0, density ρ0, and pressure p0. We also assume the atmosphere
to be initially isothermal, yielding a non-dimensional buoyancy frequency squared
N2 = (γ − 1)/γ2 and a corresponding non-dimensional buoyancy period Tb ' 14.

The additional terms on the right-hand sides of the momentum and energy equa-
tions include a body force F to excite the primary gravity wave and spectral represen-
tations of the diffusion terms, P and Q, to describe the effects of viscosity and thermal
diffusivity. The forms of these diffusion terms are described in detail by Andreassen,
Lie & Wasberg (1994a) and Andreassen et al. (1994b). Here, it is important to note
only that these terms represent second-order dissipation at large wavenumbers, but
have no influence on wave and instability structures at larger scales of motion. This
form of dissipation provides an accurate description of energy removal within the
motion spectrum at high wavenumbers and reduces the spectral scattering of energy
to larger scales often accompanying higher-order dissipation schemes (Jimenez 1994).
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The diffusion terms P and Q were chosen to yield a normalized kinematic viscosity
of ν ' 0.015 and a Prandtl number Pr = ν/κ = 0.7 at the level of wave breaking.

Equations (2.1) are solved in Cartesian coordinates, (x, y, z), using the spectral
collocation method described by Canuto et al. (1988). A Fourier/Chebyshev repre-
sentation of the solution using trigonometric functions and Chebyshev polynomials
is employed to describe the horizontal and vertical structures, respectively. These
solutions are written as

A(x, y, z, t) =

Nx/2−1∑
l=−Nx/2

Ny/2−1∑
m=−Ny/2

Nz∑
n=0

almn(t) exp[2πi(lx+ my)]Tn(z), (2.2)

with Nx, Ny , and Nz the number of collocation points in the x-, y-, and z-directions,
complex coefficients almn, and

Tn(z) = cos[n arccos(z)] (2.3)

the Chebyshev polynomial of order n. The basis functions are defined for the ranges
0 6 x < 1, 0 6 y < 1 and −1 6 z 6 1 with non-dimensional domain sizes given by
(xi0, yi0, zi0) for domain i (see below). Our solutions are thus periodic in the horizontal
directions and non-periodic in the vertical direction.

Additionally, a transformation suggested by Tal-Ezer (Lie 1994) given by

z′ = arcsin(z sin q)/q, 0 6 q <
π

2
, (2.4)

with q = 1.3 is employed to provide a more uniform vertical mesh having higher
spatial resolution in the domain interiors. These basis functions lead to a set of
collocation points given by

(xl, ym, zn) = {l/Nx, m/Ny, arcsin[cos(πn/(Nz − 1)) sin q]/q}, (2.5)

with 0 6 l 6 Nx − 1, 0 6 m 6 Ny − 1, and 0 6 n 6 Nz − 1. For additional details on
the spectral representation and the vertical coordinate transformation, the interested
reader is referred to the descriptions of the model provided by Andreassen et al.
(1994b) and Fritts et al. (1996a, b). Boundary conditions are discussed further below.

As in our previous studies, our simulation is performed in a physical domain
composed of two model domains to make efficient use of computer resources and to
provide high spatial resolution only where needed to describe the evolution of insta-
bility and smaller-scale structures. Wave excitation is performed in a low-resolution
lower domain, with wave breaking and instability confined to a higher-resolution
upper domain. Non-dimensional domain sizes are specified to be (x10, y10, z10) =
(4,2,4) and (x20, y20, z20) = (4,2,1.5) for the lower and upper domains, respectively,
with z = 0 defined at the lower boundary of the lower domain. Finally, we used
(Nx,Ny,Nz) = (192, 96, 129) collocation points in the upper domain to provide ap-
proximately isotropic resolution of small-scale structures arising due to wave breaking
and instability and to ensure precise descriptions of the various sources and sinks of
small-scale vorticity.

Solutions are constrained to be horizontally periodic by our choice of Fourier basis
functions in x and y. Matching conditions at the interface between the upper and lower
domains are specified using the upstream characteristics of the nonlinear equations
at each interface. This ensures continuity of the field variables between domains
and yields no detectable reflections at the interface (Wasberg & Andreassen 1990;
Andreassen, Anderson & Wasberg 1992). Characteristics of the nonlinear equations
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are likewise used to specify open boundary conditions at the lower boundary of the
lower domain and the upper boundary of the upper domain to minimize the influences
of these boundaries on the region of wave breaking. These boundary conditions
impose outflow conditions consistent with the internal flow characteristics adjacent
to the boundary, and inflow conditions consistent with an external hydrostatically
balanced flow. Tests of these boundary conditions with both acoustic and gravity
wave sources have shown them to be non-reflective to a high degree (Wasberg &
Andreassen 1990).

The medium is assumed initially to be in hydrostatic equilibrium with constant
non-dimensional temperature T = 1 and a horizontal mean motion in the x-direction
given by

U0(z) =

{
0, 0 6 z1 6 4
0.2{1 + cos[(1− z/2)π]}, 0 6 z2 6 1.5.

(2.6)

As in our previous wave breaking studies, the role of this shear flow is both to
induce wave instability via approach to a critical level and to confine instability and
small-scale structures to the upper domain interior having high spatial resolution.
This function was selected to give a velocity U0(z) at z2 = 1 (z2/z20 = 0.67) equal to
the horizontal phase speed of the forced wave (see below), yielding an initial critical
layer at that height.

A gravity wave is forced in the lower domain by a vertical body force of the form

f(x, z, t) = f0ξ(t)e−(z−δ)2/σ2

sin(ωt− k0x) (2.7)

with a temporal variation given by

ξ(t) =


(t/10)1/2, 0 6 t 6 10
1, 10 < t 6 50
((60− t)/10)1/2, 50 < t 6 60
0, 60 < t,

(2.8)

where f0 = 0.02 is the forcing amplitude, δ = 3 is the height of maximum forcing,
and σ = 0.5 and |k0| = 2π/xi0 = π/2 are the width and horizontal wavenumber of
the forcing. The frequency of the forcing is chosen to be ω = π/10, which is slightly
below the buoyancy frequency at the forcing level and corresponds to a horizontal
phase speed of c = 0.2, yielding the initial critical level discussed above. As this
wave motion propagates into the shear flow in the upper domain, it experiences a
compression of the vertical wavelength, due to a decrease of the intrinsic phase speed
(and frequency), and an increase in the horizontal velocity perturbation. This leads
to convective instability of the wave field at an intrinsic frequency ωi ∼ N/6 over a
depth of z2 ≈ 0.15 (a dimensional size of ∼ 1 km). Instability structures are initiated
in the model prior to the occurrence of convective instability in the manner described
by Andreassen et al. (1994b) and using the same noise amplitudes and phases to
ensure optimal comparison with our previous results.

Solutions are advanced in time using an explicit second-order Runge–Kutta method
with variable time steps and third-order error estimation to provide efficient com-
putation for large scales of motion and to ensure numerical stability as energy is
cascaded to smaller spatial scales (Andreassen et al. 1994a). Because the solutions
vary strongly with height, we also employ a set of weighting functions in order to
provide comparable sensitivity of the error estimator to variable fluctuations at all
heights. This contributed to larger time steps and further efficiency in our use of
computing resources.
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2.2. Vorticity equation

The equation describing the evolution of the components of vorticity, ωi = (∇ × v)i,
may be written

dωi
dt

= ωjSij +

(
∇ρ
ρ
× ∇p

ρ

)
i

−
[
ω∇ · v +

ν

3ρ

∇ρ
ρ
× (3∇2v + ∇(∇ · v))− ν

ρ
∇2ω

]
, (2.9)

where summation over repeated indices is assumed. Here, Sij = 1
2
(∂ivj + ∂jvi) is the

strain tensor. The term ωjSij contains the tilting of the vorticity vector (off-diagonal
terms of Sij) and the stretching of the vorticity vector (diagonal terms of Sij) by a flow
v. The term [(∇ρ/ρ)× (∇p/ρ)]i is the baroclinic source/sink of vorticity, which is non-
zero if the surfaces of constant pressure and density are not co-aligned; the baroclinic
term descibes the creation of vorticity by the torque of buoyancy force on the fluid.
The strain and baroclinic terms are the most important for understanding the vortex
dynamics in the present paper. The term in square brackets on the right-hand side
on (2.9) includes contributions due to compressibility and the spectral viscosity and
thermal diffusivity employed in (2.1). Both the compressibility and the dissipation are
of minor importance for the instability structures discussed in this paper because of
the large scales and small velocities of the flow.

2.3. Definition of a vortex

The vorticity in our simulation results is concentrated into two main geometries:
sheets and tubes. Sheets can be flat or curved, but must have one dimension much
smaller than the other two. Tubes are cylinders with roughly circular cross-section.
These are not to be confused with vorticity fieldlines which follow the vorticity field
independent of magnitude.

To define tubes more quantitatively, it is useful to have a more formal definition of
a vortex tube†. For this, we adopt the mathematical framework introduced by Jeong
& Hussain (1995) and employ the tensor defined as

L = S2 + Ω2. (2.10)

Here, Sij = 1
2
(∂ivj + ∂jvi) as before, and Ωij = 1

2
(∂ivj − ∂jvi) is the rotation tensor. Sij

and Ωij are the symmetric and antisymmetric components of the velocity gradient
tensor ∇v. As L is symmetric, it has only real eigenvalues (ordered λ1 > λ2 > λ3). A
vortex will be defined as a region where the middle eigenvalue, λ2, is negative, and
less than an appropriate cutoff value. Jeong & Hussain (1995) compare this definition
with several others based on vorticity magnitude or invariants of the velocity gradient
tensor, and show that λ2 is superior in the identification of coherent vortices. An
important point is that, for our flow regime, a vortex defined in this manner is
based on the local tendency for flow rotation rather than on vorticity magnitude. As
such, this definition provides greater sensitivity to vortex structures that are weak,
but coherent, and an ability to identify such structures at early stages of the flow
evolution. We have found in our applications that this definition also yields consistent
vortex identification at later stages when the structures are highly complex. Finally,
we note that because λ2 is based on flow rotation, vortex sheets are not prominently
displayed by λ2 even if their vorticity is large.

† We will use the terms vortex tube and vortex interchangeably.
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(a) (b)

(c) (d)

Figure 1. Isosurface of potential temperature with θ = 2.97 within the region of internal gravity
wave breaking at (a) t = 62.5, (b) 65, (c) 67.5, and (d) 70.

3. Overview of enstrophy and vorticity evolution

In this section, we provide an overview of the evolution of enstrophy and the
emergence of coherent vortices within the breaking wave. To begin, the evolution
of the breaking wave is illustrated by an isosurface of potential temperature at four
times in figure 1, with the wave propagating to the right. This particular isosurface
is shown because it resides within the region of vigorous wave breaking. Recalling
that a buoyancy period is Tb = 14 in our non-dimensional units, we see that the
entire interval displayed spans less than a buoyancy period; this evolution is both
more rapid and more vigorous than was observed in our previous lower-resolution,
more-viscous simulations.

In the first stage of evolution of the breaking wave, regions of convective insta-
bility arise (see e.g. the overturning isosurface at t = 65.0 in figure 1) from both a
compression of the vertical wavelength and an increase of the wave amplitude with
height, due to a decrease in wave intrinsic frequency and mean density with up-
ward propagation. This convective instability results in the formation of streamwise
counter-rotating vortex pairs which cause a transition from two- to three-dimensional
flow. These vortex pairs are visible in figure 2, which shows a volumetric rendering of
the λ2 eigenvalue discussed in § 2.3. The entire wave field is shown (viewed from below
with streamwise to the right and spanwise down at several times. Strong vortices are
coloured by opaque yellow/green and weaker vortices are coloured by less-opaque
blue. The streamwise vortex pairs are visible beginning at t = 62.5 as the ghostly white
streaks. As will be discussed in the next section, the streamwise vorticity arises both
from direct baroclinic generation of streamwise vorticity and from tilting spanwise
shear vorticity into the streamwise direction. The former source dominates at early
times, while the latter dominates at later times. This supports the observations of
Fritts et al. (1994, 1996b) that the major sources of instability kinetic energy are a
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(a) (b)

(c) (d)

Figure 2. Volume renderings of λ2 viewed from positive x and below showing λ2 at (a) t = 62.5,
(b) 65, (c) 67.5, and (d) 70. Colour and opacity scales are such that large negative values are yellow
and opaque, and small negative values are blue and less opaque.

conversion from eddy† gravitational potential energy at early times and a conversion
from shear kinetic energy at later times. The influences of the streamwise vortices on
the isosurfaces of potential temperature can be seen in figure 1 in the panels at t =
62.5 and 65, where downward and upward displacements of the potential temperature
surface occur inside and outside vortex pairs respectively.

In the next phase of the evolution, the streamwise vortices stretch and tilt the
spanwise vorticity of the shear (both the background shear and the shear of the wave
itself). Figure 3 shows the enstrophy of the full domain at t = 65 and t = 70. Two
views of each are shown: from positive x and above on the right, and from below
on the left. High values of enstrophy (|ω2| ∼ 15–35 at t = 65.0 and |ω2| ∼ 50–150
at t = 70.0) are bright pink and opaque and low values (|ω2| ∼ 4–15 at t = 65.0
and |ω2| ∼ 4–50 at t = 70.0) are blue and nearly transparent. Enstrophy below 4.0
is not shown. Considering t = 65 first, note that there is significant enstrophy which
is not represented in λ2 (compare figures 2b and 3a); this is because most of the
enstrophy in figure 3 lies in sheets, as can be seen by comparing figures 3(a) and 3(b),
and so does not have the rotational character required to appear in λ2. Similarly,
a careful examination shows that the enstrophy of the streamwise vortices shown
in figure 2 at t = 65.0 is too weak to appear in figure 3. In fact, the enstrophy
shown in figure 3 at t = 65 has vorticity predominantly in the spanwise direction,
and represents the vorticity of the total shear. The vorticity is strong and positive at
lower z where the wave shear is in the same direction to the background shear, and is
weak and negative at higher z where the wave shear is in the opposite direction as the
background shear. It has attained its spanwise-localized sheet shape in the following
way. Prior to the appearance of the streamwise vortices, the spanwise vorticity due
to the shear has no spanwise structure; it varies only in the streamwise and vertical
directions. The streamwise vortices created by the convective instability then advect

† The term eddy refers to the field with the spanwise average subtracted.
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(a) (b)

(c) (d)

Figure 3. Volume renderings of enstrophy viewed from below with positive x (streamwise) to the
right in the left panels (a, c), and viewed from positive x and above in the right panels (b, d); (a, b)
show t = 65 and (c, d) show t = 70. Enstrophy is shown with large values opaque and pink and
weak values transparent and grey.

and stretch the spanwise vorticity in their flow. Note, in particular, the shape of the
enstrophy in figures 3(a) and 3(b) at t = 65. The areas of brightest pink are strong
regions of enstrophy with vorticity in the positive spanwise direction that have been
advected downward by the convective rolls. As they are advected downward, their
spanwise vorticity is stretched because the flow of the convective rolls diverges in the
spanwise direction and so contributes to the straining term in (2.9). This amplifies
the enstrophy advected downward over the background enstrophy, and makes the
amplified regions thinner since the flow of the convective rolls is convergent in the
vertical direction. Interspersing the regions of strong downward-advected enstrophy
are regions of enstrophy that have been advected upward and have also been amplified
by stretching. These regions, which have negative spanwise vorticity, are weaker than
the downward-advected regions because the mean and wave shear are of opposite sign
at this phase of the wave. The enstrophy at each wave phase is concentrated in sheets
of spanwise vorticity with streamwise extents of roughly 10–20 sheet thicknesses, and
spanwise widths of roughly 6 sheet thicknesses.

The enstrophy sheets are unstable to the Kelvin–Helmholtz (KH) instability and
roll up into a series of vortex tubes. The beginning of one of these roll-ups is visible
in figure 3(a) in the topmost vortex sheet on the left side of that panel. That sheet
is rolling up into four vortex tubes, all of which are curved in the same manner.
This curvature is easily explained by noting that the edges of the original sheet
are curved upward (see e.g. figure 3b), and so the ends of the rolled-up tubes lie
above their centres. The mean shear flow (which, of course, is partially due to the
tubes themselves) advects the tube ends downstream and rotates the curvature of the
tubes. At the later time t = 70, all the sheets have rolled up into tubes. Noting that
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(a)

(b)

(c)

Figure 4. Enstrophy (pink) and λ2 (yellow) in a subdomain in the upper left corner of figures 2
and 3 at t = 65. Parts (a) and (b) display side and bottom views with positive x to the left in each
case. Part (c) shows a cut-away side view of λ2 (yellow) and a thin sheet of potential temperature
in purple and white.

the dynamical timescale of a shear layer is t ∼ (dU/dz)−1 = ω−1 which is roughly
t ' 0.2 for a typical vortex sheet, we see that the roll-up of the sheet takes about
10 shear timescales. This can be seen in figure 3, or in figure 2 which has finer time
divisions. The resulting vortex tubes are clearly visible in figure 2 showing the λ2

eigenvalue. This KH instability (which we call the secondary instability as it follows
and is triggered by the primary convective instability), then, is a distinct and robust
feature of the flow which rolls all the vortex sheets into vortex tubes which then form
intertwined horseshoe-shaped vortex loops. In figures 2 and 3, note that the enstrophy
and vortex fields are advected toward larger x (to the right) by the mean streamwise
motion so that the fields are translated by ∼ 1/3 of the domain length from t = 65 to
70. Because of the streamwise shear flow, however, the advection is weaker at lower



Vorticity dynamics in a breaking internal gravity wave. Part 1 37

levels (foreground of figure 2), with the lower structures moving more slowly toward
larger x.

To show the KH instability in the enstrophy sheets in greater detail, figure 4 displays
several views of three vortex loops on one vorticity sheet in the upper central portion
of the image at t = 67.5 in figure 2. Figure 4(a) shows the enstrophy (in red/orange
for values over 9.0) and λ2 (in blue) viewed from below with positive x (streamwise)
to the left; Figure 4(b) shows the same viewed from positive x and y. Figure 4(c)
displays a slice through the three vortex loops and shows λ2 (in yellow/green) as
well as a surface of potential temperature (with red above, white in the middle and
purple below). Here, positive x (streamwise) is to the right. Figure 4 emphasizes the
relationship between the vortices and the enstrophy distribution, with the vortices co-
aligned with the enstrophy maxima. The successive billows are spaced approximately
uniformly, and resemble those seen in purely two-dimensional geometries, but have
some differences. One difference is the horizontal scale at which the instability occurs.
In a two-dimensional flow, the maximum instability occurs for a wavelength of
∼ 7 times the shear layer thickness. In our vortex sheets, however, this scale is
approximately 5.0±0.5 times this thickness, where we define the thickness as the full
width of the vorticity distribution at 42% maximum, following the convention used
for a sech2(z/d) shear. This difference is possibly a consequence of the localized extent
of the vortex sheet, and/or the curvature of the sheet.

Figure 4 also shows the detailed shape of the resulting vortex tubes; the tubes are
curved, reflecting the curvature of the vortex sheet from which they formed, and their
ends are stretched out by the shear. The ends of the tubes intertwine with the ends of
neighbouring tubes (see figure 4c) as well as with the original streamwise vortices that
intensified and curved the sheets. When the ends of the tubes are sufficiently stretched,
the tubes form horseshoe vortices, inclined at an angle of about 45◦, although this
angle varies among the vortices and also changes with time for any given vortex
as the vortices evolve and interact. This is broadly consistent with Gerz (1991) who
found horseshoe vortices inclined at an angle of about 36◦, again with some scatter.

The net result of the primary convective and secondary dynamical (KH) instabilities
is a collection of intertwined vortex loops having counter-rotating streamwise ‘legs’
inclined along the phase of the wave motion and having centres with positive spanwise
vorticity (see figure 2d). Successive loops (toward negative x or upstream) have
their streamwise legs above and within the adjacent downstream (toward positive x)
loops. The result is a complex vorticity field having many sites where vortices with
approximately parallel, antiparallel, or orthogonal alignments occur in close proximity
and interact strongly. The vortex loops bear a close resemblance to the ‘horseshoe’ and
‘hairpin’ vortices that arise in turbulent boundary layer flows (Acarlar & Smith 1987;
Robinson 1991; and Sandham & Kleiser 1992), in stratified and sheared turbulence
(Gerz et al. 1994), and in rotating shear flows (Metais et al. 1995). The dynamics of
these structures, then, may have implications for the evolution of a broad class of
flows.

4. Sources of instability vorticity
In this section we examine the vorticity sources accounting for the enstrophy

and vorticity distributions described above. This perspective is quite different from
the energetics discussion provided by Fritts et al. (1996a, b) and yields a clearer
understanding of the origins of and interactions among the instability structures.
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(a) (b)

(c) (d)

Figure 5. A subdomain in the middle of the right edge of the domain shown in figure 2(a). Shown
is the correlation of streamwise vortices (yellow) with enstrophy (pink) in (a), and with baroclinic
sources (red positive and blue negative) in (b). Also shown are enstrophy (white) with the strain
source of spanwise vorticity in (c) and the strain source of vertical vorticity in (d). For the sources,
several magnitudes of positive (red) and negative (blue) sources are shown.

4.1. Initial convective instability

To understand the initiation and evolution of the primary convective wave instability,
we consider the major sources of vorticity at an early stage of wave breaking. In
exploring our simulation results, we have found that the effects of dissipation at small
eddy amplitudes and large eddy scales are negligible; referring to (2.9), the major
sources of eddy vorticity are then baroclinic and strain generation.

To begin, a thin (y, z) cross-section of a subdomain at large x and at t = 62.5 is
displayed in figure 5. This is a cross-section through a pair of the blue vortex cores
shown in figure 2(a). Part (a) shows the enstrophy (in white for values greater than
15.0 and red for values between 2.0 and 15.0) and the streamwise λ2 vortex cores
(in yellow). The vortex cores are made transparent so that their interiors are visible.
Figure 5(b) shows the streamwise vortices in yellow with the baroclinic source of
streamwise vorticity with red positive and blue negative. Figures 5(c) and 5(d) show
the enstrophy (white) together with strain sources of spanwise and vertical vorticity
respectively (red positive and blue negative).

Consider first the display of enstrophy and vortices (figure 5a). The vorticity was
initially spanwise and lay in two horizontal sheets: an upper, very thin sheet with
negative spanwise vorticity, and a lower thick sheet with positive spanwise vorticity.
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These sheets were deformed from advection by the flow of the vortex pairs, so that the
thin sheet now corresponds to the curved red sheets above the bright white regions.
The thick sheet corresponds to the thick white horizontal features near the bottom.
The shape of the sheets, and its correlation with the yellow streamwise vortices,
reflects the fact that the sheets have been advected by the flow of the vortices. For
example, in the centre of the panel is a region being advected upward by the flow of
the middle pair of vortices.

Referring next to the baroclinic sources of streamwise vorticity (figure 5b) whose
typical value is 0.5, we see a clear correlation between the streamwise vortices defined
by λ2 and the stronger regions of baroclinic generation, implying that the vortices
are generated by baroclinicity. In our flow regime, the baroclinic source of vorticity
is equivalent to the torque that the buoyancy force places on the fluid. So, if a fluid is
convectively unstable, the buoyancy force produces vortices via the baroclinic produc-
tion term, and the flow of the resulting vortices mixes the unstable region. Thus, it is
clear that the streamwise vortices are a convective, or baroclinicly driven, instability,
despite the presence of nearby shear sources of eddy kinetic energy described in our
previous wave breaking studies (Fritts et al. 1994, 1996a, b). Although it is not shown,
the sign of the baroclinic source reverses with depth as a consequence of the reversals
of the vertical gradient of potential temperature above and below the convectively
unstable layer, i.e. the fluid above and below the region shown is convectively stable.
Comparing figures 5(a) and 5(b), we see that the enstrophy sheets due to strong neg-
ative and positive spanwise vorticity lie in the convectively stable regions above and
below the convectively unstable layer. At later times, the baroclinic sources become
increasingly random in their orientation, due to both the restratification of the initial
convectively unstable region and the more complex nature of the flow field and the
accompanying potential temperature field (see figures 2 and 3, and the discussion by
Fritts et al. 1998).

In contrast to the baroclinic sources, the strain contributes to the generation of
all components of vorticity at early times. Referring to figure 5(c), strain sources of
spanwise vorticity due to stretching are seen in the centres of the enstrophy sheets,
with a negative source in the negative upper sheet, and a positive source in the positive
lower sheet, accounting for the intensification of those sheets. The latter are the vortex
sheets which eventually undergo the KH instability, and it is this stretching which
strengthens them to the point where they become dynamically unstable. Regions of
spanwise vorticity weakening due to tilting of spanwise vorticity into the vertical and
scrunching (i.e. vorticity weakening from local flow convergence) of spanwise vorticity
occur at locations where the flow of the vortex pair tilts upward, e.g. the blue region
in the centre of the lower half of this panel.

These regions of tilting are shown better in figure 5(d) which shows the strain
sources of vertical vorticity. Sites where there is strong creation of vertical vorticity
due to tilting of spanwise vorticity by the streamwise vortices occur at the edges of
each sheet, with oppositely signed sources at opposite edges. For example, note that
the curved negative vortex sheet in the centre top of the panel has a positive source
on the left and a negative source on the right. This pair of sources is caused by the
advection of the sheet in the upward flow of the vortices. Since the sheet is deflected
upwards in the middle, the vorticity vectors are tilted to point upward on the right
of the sheet and downward on the left. Most of the rest of the sources shown in this
panel form similar pairs and are from the same process occurring on different sheets.

Finally, strain sources of streamwise vorticity were considered in our previous study
and have maxima underlying and anti-correlated with the streamwise vorticity (Fritts
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(a)

(b)

(c)

Figure 6. Same subdomain as in figure 4 at t = 65, showing vorticity vectors (blue weak and red
strong) seen from below in (a). Parts (b) and (c) show the tilting source of streamwise vorticity and
the stretching source of streamwise vorticity respectively. The view is from below in (b) and from
positive x and below (c).

et al. 1996). They are thus correlated well with the strain sources of vertical vorticity
shown in figure 5(d) and are not displayed here.

4.2. Secondary dynamical instability

We saw above that strain sources contribute to all components of eddy vorticity
at early times. The stretching component of this source leads to the intensification
and thinning of the vortex sheets, while the tilting component reflects the advection
of the sheets in the flow of the streamwise vortices. Thinning and intensification of
these sheets drives their local Richardson number to values significantly less than the
threshold for shear instability, Ri = 0.25, for two-dimensional plane parallel flows,
and a shear instability results. However, the vortex sheets have three-dimensional
structure in that they are localized in both the spanwise and streamwise directions,
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and are also curved (see figure 4); hence, the instability structure differs in important
respects from the idealized KH instability in two-dimensions. This secondary KH
instability with spanwise-localized structure was discussed in our earlier studies of
wave breaking using lower resolution and higher dissipation. However, those studies
did not consider the detailed vortex dynamics accounting for the structure and
evolution of these features.

To investigate the manner in which the secondary dynamical instability proceeds,
we focus on the three vortices at the upstream (toward small x) end of the vortex
sheet seen in the upper right of figure 2(b). These are shown in figure 6 at t = 65.
Figure 6(a) shows the vorticity vectors, while figures 6(b) and 6(c) show enstrophy (in
white) along with the off-diagonal tilting and twisting (6b) and diagonal stretching
(6c) contributions from the strain source of streamwise vorticity. The views are from
negative z in figure 6(a) and from negative z and negative y in figure 6(b, c). Vorticity
vectors have magnitudes depicted by colour, with blue weak (ω ' 3.0), red strong
(ω ' 6.0), and yellow intermediate (ω ' 4.0− 5.0). Strain sources are shown with red
positive and blue negative.

Vorticity vectors in figure 6(a) show that the largest vorticity vectors are curved in
the same direction as the enstrophy and vortex structures shown in figures 2 and 3.
Looking more closely at the vortex sheet between adjacent maxima, however, we note
that the curvature of these vectors in the (x, y)-plane has the opposite sense. This is
a consequence of the roll-up of the vortex sheet. Since the sheet has finite spanwise
extent, the roll-up of the sheet proceeds faster in the spanwise centre of the sheet
than at the edges. This twists the vorticity lines and gives the senses of curvature
just mentioned. This is displayed in figure 6(b), which shows the strain sources of
streamwise vorticity due to twisting. Note that, at a given spanwise location, the
sources within the vortex tubes have the opposite sign to the sources outside the
tubes. This is just the twisting of the vortex lines described above. For a given
streamwise location, the sources are of opposite signs at each spanwise edge of the
sheet, since the two edges are twisted with different senses. This twisting and tilting
of vortex vectors at the edges of the vortex tubes is important because it leads to the
excitation of twist waves on the vortex tubes; these will be crucial for the dynamics of
the tubes at later times and are discussed in the companion paper (Fritts et al. 1998)

Less obvious, perhaps, are the strain sources of streamwise vorticity due to stretch-
ing displayed in figure 6(c). These are generally positive at the positive-y edge of the
vortex sheet and negative at the negative-y edge of the vortex sheet. (Ignore for the
moment the prominent red curved soures within the vortex tubes where the reverse
is true.) Put another way, the stretching sources are of the same sign as the tilting
sources within the vortex tubes and are of the opposite sign outside the vortex tubes.
This stretching occurs because the vortex sheets and tubes are not strictly horizontal.
They are tilted slightly into the vertical and are thus stretched by the vertical shear
(both background and wave shear). Returning to the small regions of oppositely
signed sources within the vortex loops, these sources are associated with the curvature
of the vortex loops. As vortex lines are advected in the flow around a vortex, they are
stretched when they are advected toward a larger radius of curvature, and scrunched
when they are advected toward a smaller radius of curvature.

5. Enstrophy spectra
To illustrate the enstrophy evolution accompanying wave field instability and the

subsequent cascade toward smaller scales of motion more quantitatively, we now
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Figure 7. Streamwise wavenumber (kx) spectra for the component contributions and total enstrophy
at times of t = 60 (a), 70 (b), and 80 (c). The streamwise, spanwise, and vertical contributions, ω2

i ,
for i = x, y, and z, are shown with dash-dotted, dashed, and dotted lines, respectively, at each time.
The kx spectrum of total enstrophy is shown with a solid line. Note that the enstrophy associated
with the mean shear flow is excluded in this presentation.
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Figure 8. As in figure 7, but for the spanwise (ky) component and total enstrophy spectra.

examine the temporal development of the component and total enstrophy spectra
and the domain-averaged enstrophy. While we have divided the discussions of the
initial convective and dynamical instabilities and the subsequent vortex interactions
between this paper and Part 2, the discussion in this section spans the entire evolution.

Streamwise and spanwise wavenumber spectra of the component and total eddy
enstrophies, ω2

i and ω2 =
∑
ω2
i , averaged over the upper domain for 0.2 < z2/z20 <

0.6, are shown at times t = 60, 70, and 80 in figures 7 and 8†. Note that the ky spectra
are corrected for the difference in the x and y domain size to permit comparison of
spectral amplitudes at the same scales in each direction. These spectra at t = 60 exhibit
clear differences. The ky spectra exhibit a series of discrete peaks corresponding to the
scales at which the dominant spanwise instabilities (i.e. the streamwise convective rolls)
arise (wavenumbers 4, 10, and 16 in figure 7 or 2, 5, and 8 relative to the spanwise
domain). The kx enstrophy spectra, in contrast, have their major contributions at

† The eddy enstrophy is the enstrophy with the mean and two-dimensional-wave contributions
subtracted by taking a spanwise average.
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Figure 9. Temporal evolution of total enstrophy spanning initial wave field instability and the
subsequent transition to turbulent flow. Line codes for component and total enstropies are as in
figure 7.

somewhat lower wavenumbers, since the convective rolls are much longer than
they are wide. In both spectra, the contributions due to spanwise vorticity are
dominant at early times because all of the initial (two-dimensional) vorticity is
spanwise and projects first onto spanwise eddy scales via stretching. Interestingly,
the excess enstrophy associated with spanwise vorticity contributes preferentially at
higher kx and lower ky relative to the other components. The differences at small ky
are unimportant because all of the amplitudes here are low. However, those at larger
kx are more significant and suggest an enhancement due to the KH instabilities that
are emerging in the vorticity and enstrophy fields (see figures 2 and 3).

By t = 70, the dominant enstrophy contributions for all components have shifted
to wavenumbers kx ∼ 2 to 20 and ky ∼ 2 to 30 (in a variance-content form, the
peak would occur at a kx for which the slope in figure 7 is −1) with the enstrophies
due to each component of vorticity at higher wavenumbers achieving near isotropy.
At later times (t = 80), the peaks in the ky spectra corresponding to the streamwise
convective rolls are no longer present, as the vortex loops have interacted and driven
the flow toward a more chaotic structure. There remain significant anisotropies at
lower wavenumbers in the ky spectra, with the spanwise enstrophy dominating the
streamwise and vertical enstrophies by factors of 2 and 4 respectively.

The domain-averaged component and total enstrophies are shown as functions
of time spanning the instability evolution and the subsequent turbulent decay in
figure 9. In order to focus on the evolution of the eddy structures, this presentation
excludes the enstrophy associated with the mean and two-dimensional wave motions
by subtracting a spanwise average. As shown in § 4.1 and § 4.2, at early times the
most significant contribution is that due to stretching (and projection onto non-zero
spanwise wavenumbers) of spanwise mean and two-dimensional wave vorticity, with
comparable, but smaller, contributions in the streamwise and vertical due to tilting
and twisting of this spanwise component. Relative contributions of vorticity in the
streamwise and vertical directions increase until the maximum enstrophy is achieved
at t ∼ 76. At this time, the two horizontal components have exchanged their relative
magnitudes, while the vertical component remains smaller by ∼ 30%. The decay
of total enstrophy beyond t ∼ 76 indicates that the flux of enstrophy (and energy)
from the mean and wave fields into the eddy, or turbulence, field has decreased at
later stages and that our simulation has captured the peak in the level of turbulence



44 Ø. Andreassen, P. Ø. Hvidsten, D. C. Fritts and S. Arendt

activity. However, additional discussion of this stage will be deferred until Part 2
which addresses those aspects of the flow evolution.

6. Summary and conclusions
We have presented an analysis of the vorticity dynamics accompanying the initial

convective instability and secondary dynamical instability of a breaking internal
gravity wave simulated with a three-dimensional, high-resolution numerical model.
The gravity wave was excited in a lower model domain and propagated into a higher-
resolution upper domain having a streamwise wind shear designed to confine wave
instability to the domain interior. Open boundary conditions permitting outward
propagation of wave energy were used at the lower and upper boundaries of the
lower and upper domains, respectively, and periodic boundary conditions were used
at the lateral boundaries. Model parameters were chosen to be representative of wave
propagation and instability in the middle atmosphere. Our simulation thus describes
a common means by which turbulence arises in geophysical flows.

Our previous studies at lower resolution examined the energetics of the wave
breaking and instability processes and the transports of energy and momentum
within the motion field. An important component of this evolution is the vertical
transport of momentum by the gravity wave at early times. This transport leads to
the formation of a layer of large spanwise vorticity along and below the unstable
phase of the wave motion and establishes the initial environment for the vorticity
evolution described in this paper.

Initial convective instability within the wave field proceeds through the development
of streamwise counter-rotating vortices arising due to baroclinic vorticity generation
within the convectively unstable phase of the wave. These streamwise vortices evolve
immediately above the large spanwise vorticity due to the superposition of wave and
mean velocity shears. Strain due to these streamwise vortices contributes in several
ways to the subsequent evolution of the spanwise vorticity layer. Stretching of the
spanwise vorticity in regions of spanwise-divergent flow below adjacent streamwise
vortices leads to thinning and intensification of this vorticity locally. The streamwise
vortices also contribute to the generation of vertical vorticity through tilting the edges
of each evolving spanwise vortex sheet.

Next, secondary dynamical (Kelvin–Helmholtz) instabilities develop on each of the
intensified spanwise vortex sheets, serving to concentrate the spanwise vorticity into
vortex tubes. At the edges of each spanwise vortex sheet, tilting of vertical vorticity
into the streamwise direction by the developing vortex tubes acts to connect each tube
with the two counter-rotating streamwise vortices accounting for the intensification
of that vortex sheet. The net result of the initial convective and secondary dynam-
ical instabilities is a series of intertwined vortex loops having increasingly complex
geometries and interactions with time.

The breaking wave evolves from a highly anisotropic two-dimensional initial flow
with eddy enstrophy initially associated only with the initial streamwise convective and
spanwise dynamical instabilities. Initial spectral distributions of enstrophy are likewise
highly anisotropic, with significant differences both in the kx and ky spectra and within
the component vorticity contributions to each. As the flow evolves toward increasing
complexity, the component contributions to each spectrum became comparable; the
only persistent differences are at lower wavenumbers where isotropy in the decay
stages of turbulence is not expected because of the large-scale mean flow and wave
motion still present.
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This analysis shows that the vorticity evolution both offers a natural perspective
from which to understand the evolution of a flow toward smaller scales of motion
and complements the understanding obtained from the energetics analysis of the
flow. Consideration of vorticity dynamics provides a simple understanding of the
initial convective instability, its role in modulation and intensification of the initial
spanwise vorticity layer, and the subsequent dynamical instability of the spanwise
vortex sheets. Vorticity dynamics is also employed in Part 2 (Fritts et al. 1998) to
examine the subsequent evolution of this flow toward isotropic turbulence.

This research was supported by the Norwegian Defence Research Establishment,
the National Science Foundation under grant ATM-9419151, and the Air Force Office
of Scientific Research under grants F49620-95-1-0286 and F49620-96-1-0300. We are
grateful to James Garten for assistance in preparing several of the figures used in the
paper.
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